Search results for "enteric neurons"
showing 4 items of 4 documents
GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility.
2011
Background. Glucagon-like peptide 2 (GLP-2), a nutrient-responsive hormone, exerts various actions in the gastrointestinal tract that are mediated by a G-protein coupled receptor called GLP-2R. A little information is available on GLP-2R expression in enteric neurons and nothing on the interstitial cells of Cajal (ICC). Methods. We investigated presence and distribution of the GLP-2R in the mouse duodenum by immunohistochemistry and the potential motor effects of GLP-2 on the spontaneous and neurally evoked mechanical activity. Key Results. The GLP-2R was expressed by the myenteric and submucosal neurons. Labelling was also present in nerve varicosities within the circular muscular layer an…
The renin–angiotensin system in gastrointestinal functions
2023
In this chapter, we describe the role played by classical and alternative renin–angiotensin system (RAS) in the physiological regulation of gastrointestinal functions. RAS modulates gut motility and mucosal functions, including secretion, fluid, and nutrient absorption. We focus mainly on the activation of angiotensin II type 1 and 2 receptors located on the smooth muscle and epithelial cells or on the enteric neurons. Few studies indicate that alternative RAS may counteract classical RAS functions. Although data on the enteric RAS system are still scarce, they encourage further investigations in consideration also of a potential involvement in gastrointestinal disorders.
Changes in the contractility of colon from hypoxanthine-guanine phosphoribosyltransferase (HPRT) knockout mice (Lesch-Nyhan disease)
2009
Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson's disease.
2009
Patients with Parkinson’s disease develop motor disturbances often accompanied by peripheral autonomic dysfunctions, including gastrointestinal disorders, such as dysphagia, gastric stasis and constipation. While the mechanisms subserving enteric autonomic dysfunctions are not clearly understood, they may involve the enteric dopaminergic and/or nitrergic systems. In the present study, we demonstrate that rats with unilateral 6-hydroxydopamine lesion of nigrostriatal dopaminergic neurons develop a marked inhibition of propulsive activity compared to sham-operated controls, as indicated by a 60% reduction of daily fecal output at the 4th week of observation. Immunohistochemical data revealed …